

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End Semester Examination.

November 2016

Program: M. Tech Electrical Engineering
Course code:

MTPX 113

Date: 21/11/2016
Duration: $\mathbf{4}$ hr.
Maximum Marks: 100

Name of the Course: Modelling and Analysis of Electrical Machine

Master file.

Instructions: (i) Question No-1 is compulsory.
(ii) Attempt any four questions from remaining six questions.
(ii) Assume any data if required.

Q. No.		Description	Marks	$\begin{gathered} \text { C.O. } \\ \text { No } \end{gathered}$	Mod. No.
1.0	(a)	An electromechanical system has two electrical inputs. The flux linkages may be expressed as. $\begin{array}{ll} \lambda_{1}\left(i_{1}, i_{2}, x\right)=x^{2} i_{1}^{2}+x i_{2} & \text { Express } W_{f}\left(i_{1}, i_{2}, x\right) \\ \lambda_{2}\left(i_{1}, i_{2}, x\right)=x^{2} i_{2}^{2}+x i_{1} & \text { and } W_{e}\left(i_{1}, i_{2}, x\right) . \end{array}$	5	1	1
	(b)	With a suitable diagram and Necessary Expression show that, $L_{a}=\frac{3}{2}\left\{L_{A}+L_{B}\right\} ; L_{q}=\frac{3}{2}\left\{L_{A}-L_{B}\right\}$	5	2	3
	(c)	With Necessary Expression and suitable diagram prove that $\vec{i}_{s}(t)=\vec{i}_{s}^{a}(t) e^{--\overrightarrow{\theta_{t}(t)}(t)}$ and $\overrightarrow{\boldsymbol{v}}_{s-\alpha \beta}^{\alpha}=\overrightarrow{\boldsymbol{v}}_{s_{\alpha} d q} \cdot e^{j \theta_{d \alpha}}$	5	2	6
	(d)	Explain Principle of Operation of Permanent Magnet synchronous machine with suitable diagram and expression.	5	1	7

2.0	(a)	A 3 Phase 64 Pole Hydro turbine generator is rated at 325 MVA, with 20 kV Line to line voltage, and a power factor of 0.85 , the machine parameters in Ohms at 50 Hz are $\mathrm{r}_{\mathrm{s}}=0.00234, \mathrm{X}_{\mathrm{q}}=0.709, \mathrm{X}_{\mathrm{d}}=1.256$, for balanced steady state rated conditions calculate (a) $\begin{array}{lll}\widetilde{E_{a}}(b) & E_{x f d}^{\prime r} & \text { (c) } T_{e}\end{array}$	8	2	4
	(b)	Show that when the stator currents of a poly phase electric machine, which is equipped with symmetrical stator windings, are unbalanced in amplitude and/or in phase, the total air-gap MMF consists of two oppositely rotating MMFs.	7	2	2
	(c)	Consider a two coupled-coil system, one on the stator and the other on the rotor. Derive the electromagnetic torque expression by energy considerations and then generalize it in terms of three-phase stator and rotor currents.	5	1	5
3.0	(a)	Give a brief Description of space vectors and Derive flux-linkage and voltage equations.	10	1	6
	(b)	Using Dynamic analysis in terms of dq windings for stator and rotor derive an expression for Inductance, voltage equations and electromagnetic torque.	10	2	5
4.0	(a)	Derive an expression for the air-gap MMF in a 2-pole, 3-phase, Y-connected salient pole synchronous machine.	15	1	2
	(b)	Write a short note on Reference Frame Theory.	5	1	3
5.0	(a)	Derive an Expression for Voltage and torque equation of Synchronous machine.	15	1	2
	(b)	Write a short note on Transformation to Rotor Reference Frames for PM Type Synchronous machine.	5	1	7
6.0	(a)	Derive the induction machine model in arbitrarily rotating reference frame.	15	1	3
	(b)	Write a short note on Transformation of stationary circuit variables to the arbitrary reference frame for resistive and inductive elements.	5	1	3

7.0	(a)	Explain in detail analysis of Induction Machine for steady state operation.	15	2	4
	(b)	Derive the expression for Electromagnetic torque using dynamic Model and Steady state voltage Equation for PM Type Synchronous machine.	5	1	7

BharatiyaVidyaBhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
Endsemester examination
November 2016
Max. Marks: 100
Class: M. Tech.
Semester: I
Name of the Course: Dynamics of Linear Systems

Instructions:

Q. P. Code: MTPS H

Duration: 4 hours
Program: Electrical Engg
Course Code :MPTX114
Master file.

1. Question No 1 is compulsory
2. Attempt any 4 questions from Q No. 2 to Q.No. 7
3. Assume suitable data if necessary

$\begin{aligned} & \mathrm{Q} \\ & \mathrm{No} \end{aligned}$		Max Marks	Module	Course Outcome
1	a. Given the system represented in the state space as follows: $\begin{aligned} & \dot{X}=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & 3 \\ -2 & -1 & -3 \end{array}\right] X+\left[\begin{array}{c} 7 \\ 1 \\ -2 \end{array}\right] \mathrm{U} \\ & Y=\left[\begin{array}{lll} 1 & -3 & 4 \end{array}\right] X \end{aligned}$ Convert the system to one where the new state vector Z , is $Z=\left[\begin{array}{ccc} 1 & 3 & -2 \\ 4 & -1 & 0 \\ 2 & 5 & 1 \end{array}\right] X$	[8]	1	CO 2
	b. Are the homogenous state equations i) $\dot{X}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] X$ ii) $\quad \dot{X}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] X$ Marginally stable? Asymptotically stable?	[7]	4	CO 1
	c. Fundamental matrices are given as follows. Find its state transition matrix? 1. $X(t)=\left[\begin{array}{cc}e^{-t} & e^{t} \\ 0 & 2 e^{-t}\end{array}\right]$	[5]	3	CO 2

\begin{tabular}{|c|c|c|c|c|}
\hline \& 2. \(X(t)=\left[\begin{array}{cc}e^{-t} \& \frac{1}{2} e^{t} \\ 0 \& e^{-t}\end{array}\right]\) \& \& \& \\
\hline 2 \& \begin{tabular}{l}
a. Design an observer for the plant \(G(s)=\) \(\frac{10}{(s+2)(s+6)(s+12)}\). Operating with \(10 \%\) overshoot and 2 sec peak time. Design an observer to respond 10 times as fast as the plant. Place the observer \(3^{\text {rd }}\) pole 20 times as far from the imaginary axis as the observer dominant poles. Assume the plant is represented in observer canonical form. \\
b. Explain different canonical realization
\end{tabular} \& [10]
[10] \& 7

4 \& $$
\begin{array}{|c}
\hline \mathrm{CO} 2 \\
\\
\\
\mathrm{CO} 2
\end{array}
$$

\hline 3 \& | a. What will be the output of a system which is BIBO stable and impulse response $g(t)$, when the inputs are |
| :--- |
| 1. $u(t)=a$ |
| 2. $u(t)=\sin \omega_{0} t$, for $t \geq 0$ |
| Prove it. |
| b. A system is represented in state space model as $\begin{aligned} & x(t)=A X(t)+B u(t) \\ & y(t)=C X(t)+D u(t) \end{aligned}$ $\text { Where } A=\left[\begin{array}{ccc} -4 & 8 & -1.5 \\ 0 & 0 & 1 \\ -8 & 14 & -3 \end{array}\right], B=\left[\begin{array}{cc} 1 & 0.5 \\ 0 & 0 \\ 0 & 1 \end{array}\right]$ $\mathrm{C}=\left[\begin{array}{ccc} 1 & 0 & -0.5 \\ 0 & 1 & 0 \end{array}\right], \mathrm{D}=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]$ |
| Find the feedback gain matrix so as to keep the eigen values at $\{-2,-3,-4\}$ | \& | [5] |
| :--- |
| [15] | \& 4

6 \& | $\mathrm{CO} 1$ |
| :--- |
| CO 2 |

\hline 4 \& | a. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 1 & -1 \\ 4 & 0 & 3\end{array}\right]$, where each column of A are linearly independent vectors in R^{4}. Find the orthonormal set using Gram-Schmidt method. |
| :--- |
| b. Reduce the state equation $y=\left[\begin{array}{lll} 1 & 1 & 1 \end{array}\right] X$ | \& | [8] |
| :--- |
| [7] | \& 1

5 \& CO 1

$C O 1$

\hline
\end{tabular}

	to a controllable one. Is the reduced equation observable? c. Explain separation principle?	[5]	7	CO2
5	a. $\dot{X}(t)=\left[\begin{array}{ll}0 & 0 \\ t & 0\end{array}\right] X(t)$. Find the solution $X(t)$ if $X(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ b. Find a state equation to describe the network shown in fig. and check its controllability and observability c. Check the matrices given below are positive definite or positive semidefinite? 1. $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ 2. $\mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ 3. $\mathrm{C}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$	[5] [10] [5]	1	$\begin{array}{\|c} \hline \mathrm{CO} 1 \\ \mathrm{CO} 1 \\ \\ \\ \\ \\ \hline \mathrm{CO} 1 \end{array}$
6	a. Find the linearized transfer function, $\mathrm{G}(\mathrm{s})=\mathrm{V}(\mathrm{s})$ / $I(s)$, for the electrical network shown in fig. the network contains a nonlinear resistor whose voltage current relationship is defined by $i_{r}=e^{v_{r}}$. The current source, $i(t)$, is a small signal generator.	[10]	1	CO 1

	b. Given the following open loop plant. $G(s)=\frac{20(s+2)}{s(s+4)(s+6)}$ Design a controller to yield a 10% overshoot with a peak time of 2 seconds.	[10]	6	CO 2
7	a. Find the Jordan form representations of following matrices 1. $\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1\end{array}\right]$	[7]	2	CO 1
	b. Find rank, nullity and null space of A $A=\left[\begin{array}{ccccc} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{array}\right]$ c. State and prove Lyapunov theorem	[8] [5]	3	CO 2 CO 1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058
End sem exam

November 2016

Program: M. Tech (Power Electronics and Power System)
Course code : MTPX112
Maximum Marks : 100
Name of the Course : Protection in power systems

Date : 18/11/2016

Semester : I

Duration : 4 hr.
Master file.

Instructions:1. Attempt any 5 full questions.

	b) In a three stepped distance scheme explain with characteristics why is 1) zone 1 adjusted to less than 100\% of line under protection 2) zone 2 adjusted to reach 25-50\% of the shortest adjoining line 3) zone 3 adjusted to reach beyond the longest length	10	1	3
Q.5	a) With a neat diagram explain the computer architecture of numerical relay	10	2	2
Q.6 Explain any one relay based on travelling waves.	10	2	5	
a) A 3 phase, 1000KVA, 33Kv/11KV transformer is connected in delta star. The C.Ts on low voltage side have turns ratio of 500/5.determine the CT ratio on high voltage side. Also obtain the circulating current when the fault of 600A of following types occur on the low voltage side a) Earth fault within the protective zone b) Earth fault outside the protective zone c) Phase to phase fault within the protective zone	15	2	4	
Q) What is the purpose of supervisory relay?	5	2	2	4

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058

End Semester Examination.

November 2016
Program: M. Tech Electrical Engineering
Date: 25/11/2016
Course code:
MTPX 117
Duration: 4 hr .
Maximum Marks: 100

Name of the Course:

Power System Planning and Reliability
Semester: I Master file.

Instructions: (i) Question No-1 is compulsory.
(ii) Attempt any four questions from remaining six questions.
(ii) Assume any data if required.

Q. No.		Description	Marks	C.O. No	Module No
1.0	(a)	Explain Seasonal and annual Forecast with Necessary Expression.	5	1	1
	(b) A generation system has one unit of 30MW having F.O.R. $=0.03$. (a) Prepare a capacity outage probability table for this single unit system. (b) Combine this table with the table calculated in previous example so as to give the capacity outage probability table for the combined system having 2 units of 40 MW each and one unit of 30MW, each unit having F.O.R. = 0.03.	5	1	5	
(c)	Derive an Expression for Expected Value of Demand and Energy	5	1	2	
	(d)	Derive an Expression for Hazard rate and Establish a relation with Reliability.	5	1	3
2.0	(a)	Define MTTF.			

		A circuit is formed by three components of A Two components of B and one component of C the failure rate of components are, $\lambda_{A}=3 * \frac{10^{-3} F}{h r}, \lambda_{A}=2 * \frac{10^{-3} F}{h r}, \lambda_{A}=4 * \frac{10^{-3} F}{h r}$ Find the reliability of the circuit for an operating time of 20 hours and also find MTTF.							
	(b)	Explain In detail, Weather Load Model, Weather Sensitive forecast, Non Weather Sensitive and Total Forecast.					10	1	1
	(c)	Explain Factor to be considered and Fundamental relations while executing Planning of Power Systems.					5	1	2
3.0	(a)	A generation system consists of 4 identical units each 50 MW and having F.O.R. $=0.02$. The load duration curve can be assigned to be linear with a load factor of 60 per cent and a peak load of 150 MW . (a) Prepare a capacity outage probability table. (b) Combine this table with the load duration curve and determine the loss of load probability.					8	1	5
	(b)	Explain Reliability of Combined Series Parallel System with Suitable example.					6	1	4
	(c)	Explain in Brief Loss of Load Indices, Consider a system of 100 MW , for which load data for a period of 365 days is given Below. Calculate LOLE. (Given $\mathrm{P}(\mathrm{X}<50)=0.020392$, Given $\mathrm{P}(\mathrm{X}>50)=0.000792$					6	1	5
4.0	(a)	Explain Average Interruption Method in Transmission						1	6

| | | Line, Consider system below using the above
 mentioned method, Calculate Average Annual
 Customer Interruption rate (AACIR). (Assuming that
 System is first composed of lines 1,2,3 and then of line
 $1,2,3,4)$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

	(b)	Mathematical Expression of a Discrete State, Continuous Transition Markov Process.	7	1	4
	(c)	The Reliability of component is 0.3 , how many such component can be connected in parallel to achieve an overall all Reliability of 0.85 .	4	1	4
6.0	(a)	A system has four components in series with reliabilities with $\mathrm{p} 1=0.97, \mathrm{p} 2=0.99, \mathrm{p} 3=\mathrm{p} 4=0.98$, with find the system reliability with both the cut and path approaches.	5	1	4
	(b)	For the system shown in the Figure Below. Determine Annual adequacy indices FP, EENS, FF and FD using (a) Available capacity Method. (b) Load Curtailment Method. Compare the Adequacy Indices for both the Methods.	15	1	7

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058
End Semester Re Examination.

January 2017

Program: M. Tech Electrical Engineering
Date: 06/01/2017
Duration: 4 hr.

Course code:
MTPX 117

Name of the Course:

Power System Planning and Reliability

Instructions: (i) Question No-1 is compulsory.
(ii) Attempt any four questions from remaining six questions.
(ii) Assume any data if required.

$\square \quad$ probability table for the combined system having 2 units

| | | (c) |
| :--- | :--- | :--- | | D |
| :--- |
| an | of 40 MW each and one unit of 30 MW , each unit having

2.0	(a)

A circuit is formed by three components of A Two components of B and one component of C the failure rate of components are,
$\lambda_{A}=3 * \frac{10^{-3} F}{h r}, \lambda_{A}=2 * \frac{10^{-3} F}{h r}, \lambda_{A}=4 * \frac{10^{-3} F}{h r}$
Find the reliability of the circuit for an operating time of

