

# Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058



#### **End Semester Examination.**

#### November 2016

Program: M. Tech Electrical Engineering

Date: 21/11/2016

Course code:

**MTPX 113** 

Duration: 4 hr.

Maximum Marks: 100

Name of the Course: Modelling and Analysis of Electrical Machine

Semester: I

Master file.

Instructions: (i) Question No-1 is compulsory.

(ii) Attempt any four questions from remaining six questions.

(ii) Assume any data if required.

| Q. No.     |     | Description                                                                                                                                                                                                                              | Marks | C.O. | Mod. |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| 1.0        | (a) | An electromechanical system has two electrical inputs.  The flux linkages may be expressed as. $\lambda_1(i_1, i_2, x) = x^2 i_1^2 + x i_2$ Express $W_f(i_1, i_2, x)$                                                                   | 5     | 1    | 1    |
| * <u>.</u> | (b) | $\lambda_2(i_1, i_2, x) = x^2 i_2^2 + x i_1$ and $W_e(i_1, i_2, x)$ .  With a suitable diagram and Necessary Expression                                                                                                                  | 5     | 2    | 3    |
|            |     | show that, $L_d = \frac{3}{2} \{ L_A + L_B \} \; ; \; L_q = \frac{3}{2} \{ L_A - L_B \}$                                                                                                                                                 |       |      |      |
|            | (c) | With Necessary Expression and suitable diagram prove that $\vec{i}_s(t) = \vec{i}_s^{\ a}(t)e^{-j\theta_{da}(t)} \qquad \text{and}$ $\vec{\mathcal{V}}_{S,\ \alpha\beta}^{\ \alpha} = \vec{\mathcal{V}}_{S,\ dq} \cdot e^{j\theta_{da}}$ | 5     | 2    | 6    |
|            | (d) | Explain Principle of Operation of Permanent Magnet synchronous machine with suitable diagram and expression.                                                                                                                             | 5     | 1    | 7    |

| 2.0                                   | (a) | A 3 Phase 64 Pole Hydro turbine generator is rated at                                                                                                                                                                             | 8  | 2 | 4 |
|---------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
|                                       |     | 325 MVA, with 20 kV Line to line voltage, and a                                                                                                                                                                                   |    |   |   |
|                                       |     | power factor of 0.85, the machine parameters in Ohms                                                                                                                                                                              |    |   |   |
|                                       |     | at 50 Hz are $r_s = 0.00234$ , $X_q = 0.709$ , $X_d = 1.256$ , for                                                                                                                                                                |    |   |   |
|                                       |     | balanced steady state rated conditions calculate (a)                                                                                                                                                                              |    |   |   |
|                                       |     | $\widetilde{E_a}(b)$ $E_{xfd}^{\prime r}$ (c) $T_e$                                                                                                                                                                               |    |   |   |
|                                       | (b) | Show that when the stator currents of a poly phase                                                                                                                                                                                | 7  | 2 | 2 |
|                                       |     | electric machine, which is equipped with symmetrical                                                                                                                                                                              |    |   |   |
|                                       |     | stator windings, are unbalanced in amplitude and/or in                                                                                                                                                                            |    |   |   |
|                                       |     | phase, the total air-gap MMF consists of two                                                                                                                                                                                      |    |   |   |
|                                       |     | oppositely rotating MMFs.                                                                                                                                                                                                         |    |   |   |
|                                       | (c) | Consider a two coupled-coil system, one on the stator and the other on the rotor. Derive the electromagnetic torque expression by energy considerations and then generalize it in terms of three-phase stator and rotor currents. | 5  | 1 | 5 |
| 3,0                                   | (a) | Give a brief Description of space vectors and Derive                                                                                                                                                                              | 10 | 1 | 6 |
|                                       |     | flux-linkage and voltage equations.                                                                                                                                                                                               |    |   |   |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (b) | Using Dynamic analysis in terms of dq windings for                                                                                                                                                                                | 10 | 2 | 5 |
|                                       |     | stator and rotor derive an expression for Inductance,                                                                                                                                                                             |    |   |   |
|                                       |     | voltage equations and electromagnetic torque.                                                                                                                                                                                     |    |   |   |
| 4.0                                   | (a) | Derive an expression for the air-gap MMF in a 2-pole, 3-phase, Y-connected salient pole synchronous machine.                                                                                                                      | 15 | 1 | 2 |
|                                       | (b) | Write a short note on Reference Frame Theory.                                                                                                                                                                                     | 5  | 1 | 3 |
| 5.0                                   | (a) | Derive an Expression for Voltage and torque equation of Synchronous machine.                                                                                                                                                      | 15 | 1 | 2 |
|                                       | (b) | Write a short note on Transformation to Rotor Reference Frames for PM Type Synchronous machine.                                                                                                                                   | 5  | 1 | 7 |
| 6.0                                   | (a) | Derive the induction machine model in arbitrarily rotating reference frame.                                                                                                                                                       | 15 | 1 | 3 |
|                                       | (b) | Write a short note on Transformation of stationary circuit variables to the arbitrary reference frame for resistive and inductive elements.                                                                                       | 5  | 1 | 3 |

| 7.0 |     | Explain in detail analysis of Induction Machine for steady state operation.                                                             | 15 | 2 | 4 |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
|     | (b) | Derive the expression for Electromagnetic torque using dynamic Model and Steady state voltage Equation for PM Type Synchronous machine. | 5  | 1 | 7 |





### Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

Endsemester examination November 2016

Q. P. Code: MTPS-11

Duration: 4 hours

Program: Electrical Engg Course Code: MPTX114



Max. Marks: 100

Class: M. Tech.

Master tile:

1. Question No 1 is compulsory

2. Attempt any 4 questions from Q No.2 to Q.No.7

Semester: I

Assume suitable data if necessary 3.

Name of the Course: Dynamics of Linear Systems

| Q<br>No |                                                                                                                                                                                                                                                                                                                                              | Max<br>Marks | Module | Course          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----------------|
| 1       | a. Given the system represented in the state space as                                                                                                                                                                                                                                                                                        | [8]          | 1      | Outcome<br>CO 2 |
|         | follows:<br>$ \dot{X} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ -2 & -1 & -3 \end{bmatrix} X + \begin{bmatrix} 7 \\ 1 \\ -2 \end{bmatrix} U $ $ Y = \begin{bmatrix} 1 & -3 & 4 \end{bmatrix} X $ Convert the system to one where the new state vector Z, is $ Z = \begin{bmatrix} 1 & 3 & -2 \\ 4 & -1 & 0 \\ 2 & 5 & 1 \end{bmatrix} X $ | [O]          |        |                 |
|         | b. Are the homogenous state equations  i) $ \dot{X} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} X $ ii) $ \dot{X} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} X $ Marginally stable? Asymptotically stable?                                                            | [7]          | 4      | CO 1            |
|         | c. Fundamental matrices are given as follows. Find its state transition matrix?  1. $X(t) = \begin{bmatrix} e^{-t} & e^t \\ 0 & 2e^{-t} \end{bmatrix}$                                                                                                                                                                                       | [5]          | 3      | CO 2            |

| and the second s | $2.  X(t) = \begin{bmatrix} e^{-t} & \frac{1}{2}e^t \\ 0 & e^{-t} \end{bmatrix}$                                                                                                                                                                                                                                                                                                |      |   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a. Design an observer for the plant $G(s) = \frac{10}{(s+2)(s+6)(s+12)}$ . Operating with 10% overshoot and 2 sec peak time. Design an observer to respond 10 times as fast as the plant. Place the observer $3^{rd}$ pole 20 times as far from the imaginary axis as the observer dominant poles. Assume the plant is represented in observer canonical form.                  | [10] | 7 | CO 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Explain different canonical realization                                                                                                                                                                                                                                                                                                                                      | []   | ļ | 002  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>a. What will be the output of a system which is BIBO stable and impulse response g(t), when the inputs are</li> <li>1. u(t) = a</li> <li>2. u(t) = sin ω<sub>0</sub>t, for t ≥ 0 Prove it.</li> </ul>                                                                                                                                                                  | [5]  | 4 | CO 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. A system is represented in state space model as $X(t) = AX(t) + Bu(t)$<br>y(t) = CX(t) + Du(t)<br>Where $A = \begin{bmatrix} -4 & 8 & -1.5 \\ 0 & 0 & 1 \\ -8 & 14 & -3 \end{bmatrix}$ , $B = \begin{bmatrix} 1 & 0.5 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$<br>$C = \begin{bmatrix} 1 & 0 & -0.5 \\ 0 & 1 & 0 \end{bmatrix}$ , $D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ | [15] | 6 | CO 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Find the feedback gain matrix so as to keep the eigen values at {-2,-3,-4}                                                                                                                                                                                                                                                                                                      |      |   |      |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 1 & -1 \\ 4 & 0 & 3 \end{bmatrix}$ , where each column of A are linearly independent vectors in $\mathbb{R}^4$ . Find the                                                                                                                                                                                              | [8]  | 1 | CO 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orthonormal set using Gram-Schmidt method.                                                                                                                                                                                                                                                                                                                                      |      |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b. Reduce the state equation                                                                                                                                                                                                                                                                                                                                                    | [7]  | 5 | CO 1 |

|   | to a controllable one. Is the reduced equation observable?                                                                                                                                                                                                                      | T    | 1   |      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|
| - | to a controllable one. Is the reduced equation observable?                                                                                                                                                                                                                      |      |     |      |
|   | c. Explain separation principle?                                                                                                                                                                                                                                                | [5]  | 7   | CO 2 |
| 5 | a. $\dot{X}(t) = \begin{bmatrix} 0 & 0 \\ t & 0 \end{bmatrix} X(t)$ . Find the solution $X(t)$ if $X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$                                                                                                                                 | [5]  | 3   | CO 1 |
|   | b. Find a state equation to describe the network shown in fig. and check its controllability and observability  ! \( \int \)   \( \lambda \)                                                                                                                                    | [10] | 5   | CO 1 |
|   | u D IF \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                   |      |     |      |
|   | -                                                                                                                                                                                                                                                                               |      |     |      |
|   | c. Check the matrices given below are positive definite or positive semidefinite?                                                                                                                                                                                               | [5]  | 1   | CO 1 |
|   | 1. $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$                                                                                                                                                                                                  |      |     |      |
|   | 2. $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$<br>3. $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$                                                                                                                                                                  |      |     |      |
| 6 | a. Find the linearized transfer function, $G(s) = V(s) / I(s)$ , for the electrical network shown in fig. the network contains a nonlinear resistor whose voltage current relationship is defined by $i_r = e^{v_r}$ . The current source $i(t)$ , is a small signal generator. | [10] | 1 ' | CO 1 |
|   | 2A Dult) Sy IF                                                                                                                                                                                                                                                                  |      |     |      |
|   |                                                                                                                                                                                                                                                                                 |      |     |      |

|   | b. Given the following open loop plant. $G(s) = \frac{20(s+2)}{s(s+4)(s+6)}$ Design a controller to yield a 10% overshoot with a peak time of 2 seconds. | [10]       | 6 | CO 2 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|------|
| 7 | a. Find the Jordan form representations of following matrices  1. $ \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix} $ [4 0 1]     | [7]        | 2 | CO 1 |
|   | $\begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$ b. Find rank, nullity and null space of A                                            |            |   |      |
|   | $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$ c. State and prove Lyapunov theorem              | [8]<br>[5] | 3 | CO 2 |
|   |                                                                                                                                                          |            |   |      |

•

•

7



### Bharatiya Vidya Bhavan's

## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

#### End sem exam

November 2016

Program: M. Tech (Power Electronics and Power System)

Course code: MTPX112

Maximum Marks: 100

Name of the Course: Protection in power systems

Instructions:1. Attempt any 5 full questions.



| EMINA! | DYABILIA  |
|--------|-----------|
|        | MA        |
|        | 第日對       |
| 图层     | 一个一个      |
| 136    | WYSI      |
| 165    |           |
| COLL   | الله الله |

| Date: | 18/11/2016 |
|-------|------------|
|       |            |

Semester: I

Duration: 4hr.

Master file.

| Q.  | Description                                                                                                                                                     | Marks | C.O. | Module |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------|
| No. |                                                                                                                                                                 |       | No.  | No.    |
| Q.1 | a) What is meant by selectivity, sensitivity, reliability between adjacent relay locations?                                                                     | 10    | 1    | 1      |
|     | b) What is the basic difference between measuring and protective CTs?                                                                                           | 5     | 1    | 1      |
|     | c) Explain why the current transformers ratios have to be identical for the bus-bar differential scheme?                                                        | 5     | 2    | 4      |
| Q.2 | a) A 3 phase 10MVA 6.6Kv generator is delivering a load of 8MW at 0.8pf.Find the value of neutral resistance R, if 10% of the winding is unprotected.           | 10    | 2    | 4      |
| ·   | The relay setting is 20%. The per phase resistance is 10%                                                                                                       | 10    | 2    | 4      |
|     | b) In generator protection Why is the field winding grounded? What is the effect of ground fault? How is the relay connected?                                   |       |      |        |
| Q.3 | a) For an internal fault with a source at only one end prove that the slope is 200% on an restraining torque verses operating torque.                           | 10    | 1    | 4      |
|     | b)With neat block diagram explain the WAMS architecture.                                                                                                        | 10    | 2    | 7      |
| Q.4 | a) Derive the inputs to B-C phase faults using distance relay measuring unit so that it correctly measures the positive sequence impedance upto B-C fault point | 10    | 2    | 3      |

|     | b) In a three stepped distance scheme explain with characteristics why is 1) zone 1 adjusted to less than 100% of line under protection 2) zone 2 adjusted to reach 25-50% of the shortest adjoining line 3) zone 3 adjusted to reach beyond the longest length                                                                                                                                                                   | 10   | 1 | 3 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|
| Q.5 | a) With a neat diagram explain the computer architecture of numerical relay                                                                                                                                                                                                                                                                                                                                                       | 10   | 2 | 2 |
|     | b) Explain any one relay based on travelling waves.                                                                                                                                                                                                                                                                                                                                                                               | - 10 | 2 | 5 |
| Q.6 | a) A 3 phase, 1000KVA, 33Kv/11KV transformer is connected in delta star. The C.Ts on low voltage side have turns ratio of 500/5.determine the CT ratio on high voltage side. Also obtain the circulating current when the fault of 600A of following types occur on the low voltage side  a) Earth fault within the protective zone b) Earth fault outside the protective zone c) Phase to phase fault within the protective zone | 15   | 2 | 4 |
| ,   | b) What is the purpose of supervisory relay?                                                                                                                                                                                                                                                                                                                                                                                      | 5    | 2 | 4 |
| Q.7 | a) Explain the application of WAMS based adaptive relaying.                                                                                                                                                                                                                                                                                                                                                                       | 10   | 2 | 6 |
|     | b)Derive the traveling wave equation for a loss-less transmission line. Also show that the general solution of this equation constitutes a forward wave and backward wave.                                                                                                                                                                                                                                                        | 10   | 2 | 5 |



#### Bharatiya Vidya Bhavan's

## Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

#### End Semester Examination.

#### November 2016

Program: M. Tech Electrical Engineering

Date: 25/11/2016

Course code:

**MTPX 117** 

Duration: 4 hr.

Maximum Marks: 100

Name of the Course:

Power System Planning and Reliability

Semester: I

Master file.

Instructions: (i)

Question No-1 is compulsory.

(ii) Attempt any four questions from remaining six questions.

(ii) Assume any data if required.

| Q. No. |     | Description                                              | Marks | C.O. | Module |
|--------|-----|----------------------------------------------------------|-------|------|--------|
|        |     |                                                          |       | No   | No     |
| 1.0    | (a) | Explain Seasonal and annual Forecast with Necessary      | 5     | 1    | 1      |
|        |     | Expression.                                              |       |      | _      |
|        | (b) | A generation system has one unit of 30MW having          | 5     | 1    | 5      |
|        |     | F.O.R. = 0.03.                                           |       |      |        |
|        |     | (a) Prepare a capacity outage probability table for this |       |      |        |
|        |     | single unit system.                                      |       |      |        |
|        |     | (b) Combine this table with the table calculated in      |       |      |        |
|        |     | previous example so as to give the capacity outage       |       |      | -      |
|        |     | probability table for the combined system having 2 units |       |      |        |
|        |     | of 40 MW each and one unit of 30MW, each unit having     |       |      |        |
|        |     | F.O.R. = 0.03.                                           |       |      |        |
|        | (c) | Derive an Expression for Expected Value of Demand        | 5     | 1    | 2      |
|        |     | and Energy                                               |       |      |        |
|        | (d) | Derive an Expression for Hazard rate and Establish a     | 5     | 1    | 3      |
|        |     | relation with Reliability.                               |       |      |        |
| 2.0    | (a) | Define MTTF.                                             | 5     | 1    | 3      |

|     |      | A circuit is formed by three components of A Two                                                                |    |   |   |
|-----|------|-----------------------------------------------------------------------------------------------------------------|----|---|---|
|     |      | components of B and one component of C the failure                                                              |    |   |   |
|     |      | rate of components are,                                                                                         |    |   |   |
|     |      | $\lambda_A = 3 * \frac{10^{-3}F}{hr}, \lambda_A = 2 * \frac{10^{-3}F}{hr}, \lambda_A = 4 * \frac{10^{-3}F}{hr}$ |    |   |   |
|     |      | Find the reliability of the circuit for an operating time of                                                    |    |   |   |
|     |      | 20 hours and also find MTTF.                                                                                    |    |   |   |
|     | (b)  | Explain In detail, Weather Load Model, Weather                                                                  | 10 | 1 | 1 |
|     |      | Sensitive forecast, Non Weather Sensitive and Total                                                             |    | 1 |   |
|     | ļ.,. | Forecast.                                                                                                       |    |   |   |
|     | (c)  | Explain Factor to be considered and Fundamental                                                                 | 5  | 1 | 2 |
|     |      | relations while executing Planning of Power Systems.                                                            |    |   |   |
| 3.0 | (a)  | A generation system consists of 4 identical units each 50                                                       | 8  | 1 | 5 |
|     |      | MW and having F.O.R. = 0.02. The load duration curve                                                            |    |   |   |
|     |      | can be assigned to be linear with a load factor of 60 per                                                       |    |   |   |
|     |      | cent and a peak load of 150 MW. (a) Prepare a capacity                                                          |    |   |   |
| į   |      | outage probability table. (b) Combine this table with the                                                       |    |   |   |
| ļ   |      | load duration curve and determine the loss of load                                                              |    |   |   |
|     |      | probability.                                                                                                    |    |   |   |
|     | (b)  | Explain Reliability of Combined Series Parallel System                                                          | 6  | 1 |   |
|     |      | with Suitable example.                                                                                          | O  | 1 | 4 |
|     |      | with suitable example.                                                                                          |    | , |   |
|     | (c)  | Explain in Brief Loss of Load Indices, Consider a                                                               | 6  | 1 | 5 |
|     |      | system of 100 MW, for which load data for a period of                                                           |    |   |   |
|     |      | 365 days is given Below.                                                                                        |    |   |   |
| 1   |      | Daily Peak 57 57 46 41 34                                                                                       |    |   | į |
|     |      | Load in MW                                                                                                      |    |   |   |
|     |      | No's of 12 83 107 116 47                                                                                        |    |   |   |
|     |      | Occurrences                                                                                                     |    |   |   |
| İ   |      | Calculate LOLE. (Given P(X<50) =0.020392, Given                                                                 |    |   |   |
|     |      | P(X>50) = 0.000792                                                                                              |    |   |   |
| 4.0 | (a)  | Explain Average Interruption Method in Transmission                                                             | 10 | 1 | 6 |

|     |     | Line, Co  | nsider syster  |          |            |                      |    |   |   |
|-----|-----|-----------|----------------|----------|------------|----------------------|----|---|---|
|     |     | mentione  | d method, C    | Calcula  | te Averag  | ge Annual            |    |   |   |
|     |     | Custome   | r Interruptio  | n rate   | (AACIR)    | . (Assuming that     |    |   |   |
|     |     | System is | s first compo  | osed of  | flines 1,2 | 2,3 and then of line |    |   |   |
|     |     | 1,2,3,4)  | .*             |          |            |                      |    |   |   |
|     |     | A L       | ne-1           | В        | Line-3     | C                    |    |   |   |
|     |     | L         | ne-2           |          | Load B     | ──► Load C           |    |   |   |
|     |     | Li        | ne-4           |          |            |                      |    |   |   |
|     |     |           |                |          | •          |                      |    |   |   |
|     |     |           | Line Sectio    | n        | Failure    | e rate / Year        |    |   |   |
|     |     |           | 1              |          |            | 0.6                  |    |   |   |
|     |     |           | 2              |          |            | 0.5                  |    |   |   |
|     |     | ,         | 3              |          |            | 0.2                  |    |   |   |
|     | -   |           | 4              |          |            | 0.7                  |    |   |   |
|     | (b) | Explain   | In Brief Rec   | ursive   | Algorith   | m, With No           | 10 | 1 | 5 |
|     |     | Derated   | and Derated    | cases.   | Apply th   | e method to          |    |   |   |
|     |     | system in | the table b    | elow.    |            |                      |    |   |   |
|     |     | Unit      | Capacity       | Failu    | ire rate   | Repair rate          |    |   |   |
|     |     | No        | (MW)           | (f/      | 'day)      | (r/day)              |    |   |   |
|     |     | 1         | 25             | 0        | 0.01       | 0.49                 |    |   |   |
|     |     | 2         | 25             | 0        | 0.01 0.49  |                      |    |   |   |
|     |     | 3         | 50             | 0        | 0.01       | 0.49                 |    |   |   |
|     |     | Consider  | r a 3 state ur | nit as b | elow for   | 50 MW.               |    |   |   |
|     |     | State     | Capacity       | Out      | State P    | robability (pi)      |    |   |   |
|     |     | 1         | 25             |          |            | 0.01                 |    |   | · |
|     |     | 2         | 25             |          |            | 0.01                 |    |   |   |
|     |     | 3         | 50             |          |            | 0.01                 |    |   |   |
|     |     | Consider  | r Availabilit  | y as 0.9 | 98.        |                      |    |   |   |
| 5.0 | (a) | Explain   | the role of F  | ower S   | System E   | ngineer in short     | 9  | 1 | 2 |
|     |     |           | Medium te      |          |            |                      |    |   |   |
| 1   |     |           |                |          | _          |                      |    |   |   |

|     | (b)  | Mathematical Expression of a Discrete State,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7  | 1       | 4 |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|---|
|     |      | Continuous Transition Markov Process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |         |   |
|     | (c)  | The Reliability of component is 0.3, how many such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  | 1       | 4 |
|     |      | component can be connected in parallel to achieve an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |         |   |
|     | <br> | overall all Reliability of 0.85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |   |
| 6.0 | (a)  | A system has four components in series with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  | 1       | 4 |
|     |      | reliabilities with p1 = 0.97, p2 = 0.99, p3 = p4 = 0.98,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | ļ.<br>Į |   |
|     |      | with find the system reliability with both the cut and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |   |
|     |      | path approaches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |   |
|     |      | $ \begin{array}{c c} A & (0.97) \\ \hline  & B \\ \hline  & C \\ \hline  & B \\ \hline  & D \\ \hline  & D \\ \hline  & E \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |         |   |
|     | (b)  | For the system shown in the Figure Below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 | 1       | 7 |
|     |      | GI 4×20MW  LI, 76 MW      |         | * |
|     |      | Compare the Adequacy Indices for both the Methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |         |   |

|     |     | S.No                                          | Elem. Out | $P_{si}$   | $\mu_s$ | $\lambda_{si}$ | Fail | F,          | Cst   | L <sub>csi</sub>                        | T | <u> </u>    | T |
|-----|-----|-----------------------------------------------|-----------|------------|---------|----------------|------|-------------|-------|-----------------------------------------|---|-------------|---|
|     |     | 1                                             | •••       | 0.85692158 | 0       | 22             | 0    | 18.85227476 | 14    | 0                                       |   |             |   |
|     |     | 2                                             | G1        | 0.03462309 | 99      | 21             | 0    | 4.15477080  | 120   | 0                                       |   |             |   |
|     |     | 3                                             | G1,G2     | 0.00052459 | 198     | 20             | 1    | 0.11436062  | 100   | 15                                      |   |             |   |
|     |     | 4                                             | G1,G2     | 0.00364454 | 156     | 18             | 1    | 0.63414996  | 90    | 25                                      |   | Ì           |   |
|     |     | 5                                             | G1,L1     | 0.00012648 | 1194    | 17             | 0    | 0.15329376  | 120   | 0                                       |   |             |   |
|     |     | 6                                             | G1,L2     | 0.00015810 | 1194    | 16             | 0    | 0.19145910  | 86    | 29                                      |   |             |   |
|     |     | 7                                             | G1,L3     | 0.00011857 | 975     | 18             | 0    | 0.11774001  | 95    | 20                                      |   |             |   |
|     | i i | 8                                             | G2        | 0.09020227 | 57      | 19             | 1    | 6.85537252  | 110   | 5                                       |   |             |   |
|     |     | 9                                             | G2,G2     | 0.00237337 | 114     | 16             | 1    | 0.30858620  | 80    | 35                                      |   |             |   |
|     |     | 10                                            | G2,L1     | 0.00032951 | 1152    | 15             |      | 0.38783327  | 110   | 5                                       |   |             |   |
|     |     | 11                                            | G2,L2     | 0.00041188 | 1152    | 14             |      | 0.48438029  | 86    | 29                                      |   |             |   |
| ĺ   |     | 12                                            | G2,L3     | 0.00030891 | 933     | 16             |      | 0.29115559  | 95    | 20                                      |   |             |   |
| -   |     | 13                                            | <u>L1</u> | 0.00313030 | 1095    | 18             |      | 3.48402390  | 140   | 0                                       |   |             |   |
|     |     | 14                                            | L1,L2     | 0.00001430 | 2190    | 13             |      | 0.03150029  | 60    | 55                                      |   |             |   |
|     |     | 15                                            | L1,L3     | 0.00001072 | 1971    | 15             |      | 0.02128992  | 95    | 35                                      |   |             | 1 |
|     |     | 16                                            | 1.2       | 0.00391288 | 1095    | 17             |      | 4.35112256  | 86    | 29                                      |   | į           |   |
|     |     | 17                                            | L2,L3     | 0.00001340 | 1971    | 14             |      | 0.02659900  | 0     | 110                                     |   | ĺ           |   |
|     |     | 18                                            | L3        | 0.00293466 | 876     | 19             | 0    | 2.62652070  | 95    | 20                                      |   |             |   |
|     |     |                                               | •         |            |         |                |      |             |       |                                         |   |             |   |
| 7.0 |     | Write                                         | Short     | notes on   |         |                |      |             |       | *************************************** |   |             |   |
|     |     |                                               |           |            |         |                |      |             |       |                                         |   |             | . |
|     |     |                                               |           |            |         |                |      |             |       |                                         |   | <del></del> |   |
|     | (a) | Frequ                                         | ency Du   | ration Me  | thod.   | •              |      |             |       |                                         | 5 | 1           | 6 |
|     | (b) | Bath Tub Curve.                               |           |            |         |                |      |             |       | 5                                       | 1 | 3           |   |
|     |     | D 1                                           |           |            |         |                |      |             |       |                                         | ļ | 1           |   |
|     | (c) | Probability Density Function of Forced Outage |           |            |         |                |      |             |       | 5                                       | 1 | 2           |   |
|     |     | Capac                                         | ity.      |            |         |                |      |             |       |                                         |   |             |   |
|     |     |                                               | ~~~       |            |         |                |      |             |       |                                         | ļ | 1           |   |
|     | (d) | Object                                        | tive and  | Factor Ef  | fectin  | g C            | ene  | eration Pla | ınnin | ıg.                                     | 5 | 1           | 2 |
|     |     |                                               |           |            |         |                |      |             |       |                                         | 1 |             |   |





# Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058



January 2017

Program: M. Tech Electrical Engineering

Course code:

**MTPX 117** 

Date: 06/01/2017

Duration: 4 hr.

Maximum Marks: 100

Name of the Course:

Power System Planning and Reliability

Semester:

Master file.

Question No-1 is compulsory. Instructions: (i)

Attempt any four questions from remaining six questions. (ii)

Assume any data if required. (ii)

| . No. |     | Description                                                                                                                                                                                                                                          | Marks | C.O.<br>No | Module  <br>No |
|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|----------------|
| 1.0   | (a) | The Reliability of a system is given by $R(t) = \left[ \left( 1 - \frac{t}{t_0} \right)^2  0 \le t \le t_0 \right]$ $0  t \ge t_0$                                                                                                                   | 5     | 1          | 1              |
|       |     | Determine  (i) The failure rate  (ii) Does failure rate increase or decrease with time  (iii) Determine the MTTF.                                                                                                                                    |       |            |                |
|       | (b) | A generation system has one unit of 30MW having F.O.R. = 0.03.  (a) Prepare a capacity outage probability table for this single unit system.  (b) Combine this table with the table calculated in previous example so as to give the capacity outage | 1     | 1          | 5              |

|     |     | probability table for the combined system having 2 units                                                           | Ì  | Ì                 |       |   |
|-----|-----|--------------------------------------------------------------------------------------------------------------------|----|-------------------|-------|---|
|     |     | of 40 MW each and one unit of 30MW, each unit having                                                               |    |                   |       |   |
|     |     | 1                                                                                                                  |    |                   |       |   |
|     |     | F.O.R. = 0.03.                                                                                                     | 5  | 1                 | 2     |   |
|     | (c) | Derive an Expression for Expected Value of Demand                                                                  |    |                   |       |   |
|     |     | and Energy                                                                                                         | 5  | 1                 | 3     |   |
|     | (d) | Derive an Expression for Hazard rate and Establish a                                                               |    |                   |       |   |
|     |     | relation with Reliability.                                                                                         | 5  | 1                 | 3     | 1 |
| 2.0 | (a) | Define MTTF.                                                                                                       | 3  |                   |       |   |
|     | `,  | A circuit is formed by three components of A Two                                                                   |    |                   |       |   |
|     |     | components of B and one component of C the failure                                                                 |    |                   |       |   |
|     |     | rate of components are,                                                                                            |    |                   |       |   |
| ,   |     | $\lambda_A = 3 * \frac{10^{-3} F}{hr}, \lambda_A = 2 * \frac{10^{-3} F}{hr}, \lambda_A = 4 * \frac{10^{-3} F}{hr}$ |    |                   |       |   |
|     |     | $\lambda_A = 3 * \frac{1}{hr}, \lambda_A = 2 * hr$                                                                 |    |                   |       |   |
|     |     | to Compare time of                                                                                                 |    |                   |       |   |
|     |     | Find the reliability of the circuit for an operating time of                                                       |    |                   |       |   |
|     |     | 20 hours and also find MTTF.                                                                                       | 10 | $+$ $\frac{1}{1}$ | 1     |   |
|     | (b) | Explain Seasonal and Annual Forecast, with Suitable                                                                |    |                   |       |   |
|     | 1   | Diagram and Expressions.    Explain Factor to be considered and Fundamental                                        | 5  | 1                 | 2     |   |
|     | (c) | relations while executing Planning of Power Systems.                                                               |    |                   |       |   |
|     |     |                                                                                                                    | 8  | 1                 | 5     |   |
| 3.0 | (a  | MW and having F.O.R. = 0.02. The load duration curve                                                               | ;  |                   |       |   |
|     |     | can be assigned to be linear with a load factor of 60 per                                                          | r  |                   |       |   |
|     |     | can be assigned to be linear war as capacity cent and a peak load of 150 MW. (a) Prepare a capacity                | y  |                   |       | • |
|     |     | outage probability table. (b) Combine this table with th                                                           | e  |                   |       |   |
|     |     | outage probability table. (b) Combine the loss of loa                                                              | d  |                   |       |   |
|     |     | load duration curve and determine the loss of loa                                                                  |    |                   |       |   |
|     |     | probability.                                                                                                       |    |                   | 1 4   | 1 |
|     | -   | (b) Explain Series and Parallel series system in Reliability                                                       | 6  |                   | 1   4 | r |
|     |     |                                                                                                                    |    |                   | 1 5   | 5 |
| -   | -   | (c) Explain in Brief Loss of Load Indices, Consider a                                                              |    |                   |       |   |
|     |     | system of 100 MW, for which load data for a period o                                                               | 1  |                   |       |   |
|     |     | 365 days is given Below.                                                                                           |    |                   |       |   |
|     |     | Daily Peak 57 57 46 41 34                                                                                          |    |                   |       |   |
| 1   | 1   | Load in MW                                                                                                         | 1  |                   |       |   |

| 4.0 | (a) | P(X>50  | ences $te LOL$ $(1) = 0.0$ $(2) Avera$     | ge Interrup                                     | P(X<50                         | ethod in                | Transmi                        |                     | 10 |    | 1 | 6 |  |
|-----|-----|---------|--------------------------------------------|-------------------------------------------------|--------------------------------|-------------------------|--------------------------------|---------------------|----|----|---|---|--|
|     |     | Line, C | conside<br>ned me<br>ner Inte<br>n is firs | er system bethod, Calcerruption rest compose    | elow us<br>culate A<br>ate (AA | sing the average A      | bove<br>nnual<br>Assuming      | g that              |    |    |   |   |  |
|     |     | A       | Line-1<br>Line-2<br>Line-4                 |                                                 |                                | ne-3<br>oad 8           | C                              | Łoad C              |    |    |   |   |  |
|     |     |         | Li                                         | ne Section  1  2  3  4                          |                                | (                       | ate / Yea<br>0.6<br>0.5<br>0.2 | ır                  |    |    |   |   |  |
|     | (1) | Dera    | ated an                                    | Brief Record Derated the table be Capacity (MW) | cases. A elow.                 | Apply the re rate day)  | Repair (r/ds                   | r rate ay)          |    | 10 | 1 | 5 |  |
|     |     | 5       | 2<br>3<br>State<br>1<br>2                  | 25<br>50<br>Capacity<br>25                      | Out                            | 0.01<br>0.01<br>State P |                                | 49<br>49<br>cy (pi) |    |    |   |   |  |

|     |     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |   |   |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| T   |     | 3 50 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |   |
|     |     | Consider a 3 state unit as below for 50 MW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     | Ì   | Consider Availability as 0.98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |   |
|     |     | Explain the role of Power System Engineer in short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 | 1 | 2 |
| 5.0 | (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     |     | long and Medium term planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |   |
|     | ,   | the state of the s | 5  | 1 | 4 |
|     | (b) | Derive an expression for Failure rate and show that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |   |
| Ì   |     | R(t) = 1 - F(t).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | 1 | 4 |
|     | (c) | The Reliability of component is 0.3, how many such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J  | 1 |   |
|     | (-) | component can be connected in parallel to achieve an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |   |   |
|     |     | overall all Reliability of 0.85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | 1 | 4 |
| 6.0 | (a) | A system has four components in series with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  | 1 | • |
| ••• |     | reliabilities with p1 = 0.97, p2 = 0.99, p3 = p4 = 0.98,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |   |
|     |     | with find the system reliability with both the cut and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |   |
|     |     | path approaches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     |     | (0.97) $(0.99)$ $(0.98)$ $(0.98)$ $(0.98)$ $(0.98)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |   |
|     |     | 1 2 3 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |   |
| ļ   | (b) | For the system shown in the Figure Below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 | 1 | 7 |
|     | (0) | 1 of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   | Ì |
|     |     | G1 4×20MW G2 2×30MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |   |
|     |     | GI) 4XZUSAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |   |
|     |     | L1, 76 MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |   |
|     |     | L2 L3 86 MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |   |
|     |     | 95 MW 86 MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |   |
|     |     | 115 MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     |     | Elem. λ (£/y) μ (ε./y). Gl 1 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     |     | G2 3 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |   |   |
|     |     | 12 5 1095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |   |
|     |     | L3 3 876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   | , |
|     |     | Determine Annual adequacy indices FP, EENS, FF and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |   |   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |
|     |     | FD using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |   |
|     |     | (a) Available capacity Method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |   |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |

| -T  | 10  | b) Load Curtailment Method.                                    |   |   |               |
|-----|-----|----------------------------------------------------------------|---|---|---------------|
|     |     | Compare the Adequacy Indices for both the Methods.             |   |   |               |
|     |     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$          |   |   |               |
| 7.0 |     | Write Short notes on                                           | 5 | 1 | 6             |
| -   | (a) | Frequency Duration Method.                                     | 5 | 1 | 3             |
|     | (b) | Bath Tub Curve.                                                |   | 1 | $\frac{1}{2}$ |
| -   | (c) | Probability Density Function of Forced Outage                  | 5 | 1 | ۷             |
|     | (4) | Capacity.  Objective and Factor Effecting Generation Planning. | 5 | 1 | 2             |
| 1   | (d) | Objective                                                      |   |   |               |